Volume 3, Issue 3, September 2018, Page: 20-26
Effect of Irrigation with Brackish Water on the Morpho-Biochemical Behavior of Olea Europaea
Gharabi Dhia, Laboratory of Agro Biotechnology and Nutrition in Dry Areas, Ibn Khaldoun University, Tiaret, Algeria
Benchaben Hellal, Laboratory of Geomatics and Sustainable Development, Ibn Khaldoun University, Tiaret, Algeria
Abdelkrim Hassani, Laboratory of Agro Biotechnology and Nutrition in Dry Areas, Ibn Khaldoun University, Tiaret, Algeria
Received: Oct. 30, 2018;       Accepted: Nov. 26, 2018;       Published: Dec. 24, 2018
DOI: 10.11648/j.eeb.20180303.11      View  173      Downloads  20
Abstract
The objective of this work is to determine the morpho-biochemical behavior of olive (2 years old) plants stemming from herbaceous cuttings and grafted on an oleaster, with two varieties of Spanish origin (Manzanilla and Arbiquina) and two varieties of Algerian origin (Sigoise and Chemlal) under the effect of irrigation with salin water at 100 mM-l-1 NaCl. The experimentation takes place in the Faculty of Science of Nature and Life - Tiaret Ibn Khaldoun - University - Algeria, under a semi-automatic greenhouse and under well controlled conditions. The control plants are irrigated with a nutrient solution, while the plant stress received nutrient solution enriched by sodium chlorure in four repetitions 100 mM / l NaCl. The analysis focused on the measurement of leaf area, soluble sugar and proline content. According to the results obtained, the leaf area of the treated plants slightly decreased compared to that of the control plants. However, the 20 weeks of brackish irrigation resulted in proline and sugars accumulation in the stressed genotype compared to the control genotype. In addition, this accumulation is very important for the leaves of plants local origin (Algerian) compared to introduced plants (Spanish) and in the leaves of plants grafted on oleaster compared to plants from herbaceous cuttings.
Keywords
Olive Trees, Herbaceous Cuttings, Grafted, Salt Stress, Proline, Sugars and Leaf Area
To cite this article
Gharabi Dhia, Benchaben Hellal, Abdelkrim Hassani, Effect of Irrigation with Brackish Water on the Morpho-Biochemical Behavior of Olea Europaea, Ecology and Evolutionary Biology. Vol. 3, No. 3, 2018, pp. 20-26. doi: 10.11648/j.eeb.20180303.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Loussert R, Brousse G (1978): L’olivier. Systématique et classification botanique. G. P. Maisonneuve et La rose, Paris.
[2]
Rozema, J., Flowers, T., 2008. Crops for a salinized world. Science 322, 1478–1480.
[3]
Abdel Latef, A. A., 2010. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res. Comm. 38, 43–55.
[4]
Pasternak, D., Malach, Y. D., 1994. Crop irrigation with saline water. In: essarakli Mo (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York, p.599–622.
[5]
Villa-Castorena, M., Ulery, A. L., Catalan-Valencia, E. A., Remmenga, M. D., 2003. Salinity and nitrogen rate effects on the growth and yield of Chile pepper plants. Soil. Sci. Soc. Am. J. 67, 1781–1789.
[6]
Kinet M., F. Z Benrebiha, S. Bouzid, S. Lailcahar & P. Dupuit., 1998.­Reseau Atriplex. Atelier biotechnologies et écologie pour une sécurité alimentaire accrue en régions arides et semi arides. Cahiers Agricultures, Vol.7, N°6, 505­509.
[7]
Hoagland, D. R., Arnon, D. I. (1938). The water culture method for growing plants without soil. University of California, Agricultural experimental station Circular, 347, 1-39.
[8]
Gate, P., (1995): Ecophysiologie du blé. Ed. Lavoisier, PARIS; tech. et doc., pp 244-245 (429 Pages).
[9]
Shields, R. et Burnett, W. (1960). Determination of protein bound carbohydrate in serum by a just modified anthrone method. Anal. Chem., 32: 885-886.
[10]
Rekika D. (1997). Identification des caractères physiologiques liés au rendement en condition de sécheresse chez le blé dur. Thèse Doctorat, ENSA Montpellier, 102p.
[11]
Troll W.; and Lindsley J. (1955): A photometric method for the determination of proline. J. Biol. Che., 215, 655-660.
[12]
Leport. L., 1992. Accumulation de proline associée aux contraintes environnementales et à la floraison chez le colza (Brassica napus L). Thèse D'état. 156 p. Rennes.
[13]
Wang Y., Nil N., 2000. Changes in chlorophyll, ribulose biphosphate carboxylase oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol, 75: 623–627.
[14]
Munns, R., A. J. Richard, A. Lauchli (2006): Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, Vol. 57, No. 5, pp. 1025–1043.
[15]
Sarda X., Vansuyt G., Tousch D., Casse-Delbart F., Lamaze T., 1993, Les signaux racinaires de la régulation stomatique, Tolérance à la sécheresse des céréales en zones méditerranéenne. Diversité génétique et amélioration variétale, Éditions Inra, Paris, pp. 75-79.
[16]
Steduto P., Albrizio R., Giorio P. and Sorrentino G., 2000. Gas exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity 144 (3) 243-255.
[17]
Zhang, J. L., Shi, H., (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1-22. https://doi.org/10.1007/s11120-013-9813-6.
[18]
Raymond J., Janet L., Siefert, Christopher R., Staples and Robert E., 2004: The Natural History of Nitrogen Fixation Mol. Biol. Evol., 21: p541-554.
[19]
Chunyang L, Kaiyun W (2003): Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. Uni of Helsinki. Finland. Forest Ecology and Management 179: 377 – 385.
[20]
Noiraud N., Delrot S. AND Lemoin R. (2000): The sucrose transporter of celery. Identification and expression during salt stress 1. Plant physiol. Volum 122, Pp 1447-1456.
[21]
Bouzoubaâ. Z., El Mousadik. A et Benlahcen Y. (2006). Variation in amounts of epicuticular waxes on leaves of argania spinosa (L). Skeels. Acta Bot. Gallica 153(2), 167-177.
[22]
Hoekstra F. A., Golovina E. A. and Butinik J. 2001. Mechanism of plant desiccation tolerance. Trends Plant Sci. 6: 431–438.
[23]
Phillips, J. R., Oliver, M. J., et Bartels, D. 2002. Molecular genetics of desiccation and tolerant systems. Dans Desiccation and survival in plants: Drying without dying. Sous la direction de M. Black et H. Pritchard. CAB International, Mol. Gen. Genet. p. 319–341.
[24]
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000): Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology., 124: 1854–1865.
[25]
Streeter, J. G., Lohnes, D. G., and Fioritto, R. J. 2001. Pattern of pinitol accu-mulation in soybean plants and relationships to drought tolerance. Plant CellEnviron. 24: 429–438.
[26]
Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. (2002): Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal.; 29-417–426.
[27]
Bartels, D., Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24, 23-58.
[28]
Majumder A. L., Chatterjee A., Ghosh Dastidar K. & Majee M. (2010) Diversification and evolution of L-myo-inositol 1- phosphate synthase. FEBS Letters 53, 3–10.
[29]
Hare PD, Cress WA, Staden V (2002): Dissection the roles of osmolyte accumulation during stress. Plant Cell and Environment; 21: 535-53.
[30]
Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant Sci., 23(2): 157-174.
[31]
Voetberg G, Sharp RE (1991): Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant physiol 96: 1125-1130.
[32]
Moradshahi, A., Eskandari, B. S., and Kholdebarin, B. 2004: Some physiological reponses of canola (Brassica napus L.) to water deficit stress under laboratory conditions Indian J. Sci. Technol., Transaction A. 28 (Al): 43-50.
[33]
Kishor P. B. K, Sangam S, Amrutha R. N, Laxmi P. S, Naidu K. R, Rao K. R. S. S, Rao S, Reddy K. J, Theriappan P, Sreenivasula N. 2005: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci.; 88: 424–438.
[34]
Sharma SS., Dietz K. J. (2006): The significance of amino acids and amino acidderived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot.; 57, 711–26.
[35]
Eliane Cristina Gruszka Vendruscolo, IvanSchuster, MarcosPileggi, Carlos Alberto Scapim, Hugo Bruno Correa Molinari, Celso Jamil Marur, and Luis Gonzaga Esteves Vieira. (2007): Stress-induced synthesis of proline confers tolerance to water in transgenic wheat.journal of plant physiology.164, 1367-1376.
[36]
Sivakumar G, Yu KW, Hahn EJ, Paek KY (2005) Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Current Sci 89: 641-649.
[37]
Kala S, Godar AK. 2011. Effect of moisture stress on leaf total proteins, proline and free amino acid content in commercial cultivars of ziziphus mauritiana. J. Sci. Res., 55: 65-69.
[38]
Chaib G., Hazmoune T. et Benlaribi M. (2008). Impact de stress hydrique sur le test proline autant qu’indicateur à la biodiversité de blé dur. Annales de l’INRGREF, Actes des Journées Scientifiques de l’INRGREF, « La biodiversité dans les aires Protégées » Hammamet, Tunisie, 11-13 Novembre 2008. Numéro Spécial (12), 732-746.
[39]
Din, J., Khan, U., Ali, I., and Gurmani, R. A.(2011). Physiological and agronomic response of Canola varieties to drought stress. The Journal of Animal and Plant Sciences 2011, 21(1), 78-82.
[40]
Garcia A., CA. Rizzo, J. Uddin, SL. Bartos, D. Senadhira, TJ. Flowers, AR. Yeo.(1997):. Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: Potassium selectivity differs between rice and wheat. Plant Cell Environ., 20: 1167–1174.
[41]
Benhassaini, H. Fetati, A.; Hocine, A. K.; Belkhodja, M. (2012): Effet du stress salin sur la croissance, l'accumulation de la proline et des sucres solubles sur des plantules porte-greffe de pistacia atlantica desf. subsp. Atlantica. Vol. 16, N°2/2012.
[42]
Ben nja riheb, 2014: Effet d’un stress salin sur la teneur en polymères pariétaux dans les feuilles de luzerne (Medicago sativacv Gabès) et sur la distribution dans les cellules de transfert des fines nervures. Thèse de doctorat, Biosciences de l’Environnement et de la Santé, Universités de Limoges et Carthage. P: 52-53.
[43]
Kirti PB, Hadi S, Chopra VL (1991): Seed transmission of salt tolerance in regenerants of Brassica junceaselected in vitro. Cruciferae Newsletter. 1991; 85: 14–15.
Browse journals by subject