Volume 4, Issue 4, December 2019, Page: 45-54
Population Dynamics and Genetics of Gerbillus nigeriae in Central Sahel: Implications for Rodent Pest Control
Hima Karmadine, Departement of Biology, Abdou Moumouni University (UAM), Niamey, Niger
Granjon Laurent, Center of Biology for Population Management (CBGP), Campus International de Baillarguet, Montferrier-sur-Lez, France
Gauthier Philippe, Center of Biology for Population Management (CBGP), Campus International de Baillarguet, Montferrier-sur-Lez, France
Ndiaye Arame, Laboratoy for Sudano-Sahelian Animal Populations, BIOPASS (UCAD-IRD-CIRAD-ISRA), Dakar, Sénégal
Brouat Carine, Center of Biology for Population Management (CBGP), Campus International de Baillarguet, Montferrier-sur-Lez, France
Dobigny Gauthier, Center of Biology for Population Management (CBGP), Campus International de Baillarguet, Montferrier-sur-Lez, France
Received: Sep. 17, 2019;       Accepted: Oct. 21, 2019;       Published: Oct. 31, 2019
DOI: 10.11648/j.eeb.20190404.11      View  53      Downloads  21
Abstract
Gerbillus nigeriae is a sand-dwelling and semi-arid adapted rodent species restricted to the West African Sahel where it causes extensive damages to cereal crops such as millet and sorghum. It also displays one of the most extensive floating chromosomal polymorphisms currently known in mammals, showing a non-random spatial distribution of diploid numbers (2N). We combined population dynamics and genetics to determine dispersal and mobility parameters of G. nigeriae in the species distribution range characterized by low 2N. To do so, we performed a three-year long population survey at Gangara, in the central east Niger. We used both time-dependent monitoring trough capture-mark-recapture (CMR) methods and genetic analyses performed on the 134 monitored individuals. CMR results showed low to very low population densities (maximum 27.5 individuals/ha) throughout the study. Abundance cycle was single-phased and strongly dependent on rainfall patterns. Mobility parameters showed very low individual mobility, with means of distance between successive (re) captures (DRS) and maximal distance between (re) captures (DMR) of 7.8 and 14.4 meters, respectively. Genetic analyses revealed significant isolation by distance as well as spatial structuration, thus confirming poor dispersal capacity. Our results are discussed in terms of rodent pest control in arid areas of Niger where cereal crops production is crucial for human food security.
Keywords
Pest Rodent, Gerbillus nigeriae, Abundance, Mobility, Dispersal, Rodent Control, Niger
To cite this article
Hima Karmadine, Granjon Laurent, Gauthier Philippe, Ndiaye Arame, Brouat Carine, Dobigny Gauthier, Population Dynamics and Genetics of Gerbillus nigeriae in Central Sahel: Implications for Rodent Pest Control, Ecology and Evolutionary Biology. Vol. 4, No. 4, 2019, pp. 45-54. doi: 10.11648/j.eeb.20190404.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Granjon, L., Duplantier, J-M. (2009). Les rongeurs de l'Afrique sahélo-soudanienne. IRD/MNHN (eds.). 215 pp.
[2]
Hima, K., Thiam, M., Catalan, J., Gauthier, P., Duplantier, J. M., Piry, S., Sembène, M., Britton-Davidian, J., Granjon, L., Dobigny, G. (2011). Extensive Robertsonian polymorphism in the African rodent Gerbillus nigeriae: geographic aspects and meiotic data. Journal of Zoology, 284: 276-285.
[3]
Nomao, A. (2001). Contribution à la connaissance des rongeurs du Niger. Caractéristiques biologiques et écologiques d'une population de Gerbillus nigeriae (Rodentia Gerbillinae), dans la ferme de Kollo (Niger). Doctorat de 3ème cycle, Université Abdou Moumouni de Niamey. 215 pp.
[4]
Nomao, A., Gautun, J. C. (2001). Dynamique de l'abondance et reproduction de Gerbillus nigeriae (Rodentia, Gerbillinae) dans la ferme de Kollo (Niger). African small mammals: 481-498.
[5]
Hima, K. (2010). Biologie évolutive de Gerbillus nigeriae (Rodentia, Gerbillinae), principal ravageur des cultures céréalières au Niger: aspects chromosomique, morphométrique et populationnel. Thèse de Doctorat, UAM, Niamey. 194 pp.
[6]
DGPV, Direction Générale de la Protection des Végétaux, Ministère du Développement Agricole (2008). Bulletin Phytosanitaire de la Direction Générale de la Protection des Végétaux-MDA, Niger: Synthèse 1995 à 2008.
[7]
Krebs, C. J., 1999. Current paradigms of rodent population dynamics - what are we missing? In: G. R. Singleton, L. A Hinds, H. Leirs & Z. Zhang (Eds), Ecologically-based management of rodent pests. Australian Center for International Agricultural Research (ACIAR), Canberra, pp. 33-48.
[8]
Sicard, B. (1987). Mécanismes écologiques et physiologiques de régulation des variations de la dynamique des populations des rongeurs sahéliens (Burkina Faso). Thèse de Doctorat d'Etat, USTL, Montpellier II. 303 pp.
[9]
Lebel, T., Ali, A. (2009). Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J. Hydrol. 375: 14-33.
[10]
Volobouev, V., Viegas-Péquignot, E., Petter, F., Gautun, J. C., Sicard, B. & Dutrillaux, B. (1988). Complex chromosomal polymorphism in Gerbillus nigeriae. Journal of Mammalogy 69: 131-134.
[11]
Dobigny, G., Nomao, A., Gautun, J. C. (2002). A cytotaxonomic survey of Rodents from Niger: implications for systematics, biodiversity and biogeography. Mammalia 66 (4): 495-523.
[12]
Gauthier, P., Hima, K., Dobigny, G. (2010). Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae. Chromosome Research 18: 473-486.
[13]
Dobigny, G., Britton-Davidian, J. and Robinson, T. J. (2017). Chromosomal polymorphism in mammals: an evolutionary perspective. Biol. Rev. 92, 1–21.
[14]
Sikes, R. S., Gannon, W. L., and the Animal Care and Use Committee of the American Society of Mammalogists (2011). Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92 (1): 235–253.
[15]
Krebs, C. J. (1966). Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 36: 239-273.
[16]
Byrne, A. W., Do Lin San, E. (2016). A cautionary note on the use of minimum number alive-derived trappability metrics in wildlife programmes, as exemplified by the case of the European badger (Meles meles). Wildlife Biol. in Practice 12 (3): 51-57.
[17]
Kaufman, D. W., Gentry, J. B., Kaufman, G. A., Smith, M. H., Wiener, J. G. (1978). Density estimation of small mammals: comparison of techniques utilizing removal trapping. Acta Theriol. 23 (7): 171-197.
[18]
Creel, S. and Creel N. M. (2002). The African Wild Dog: Behavior, Ecology, and Conservation. Princeton University Press, Princeton, New Jersey, 341 p.
[19]
Rurik, L. and Macdonald D. W. (2003). Home range and habitat use of the kit fox (Vulpes macrotis) in a prairie dog (Cynomys ludovicianus) complex. J. Zool., 259: 1-5.
[20]
Thiam, M., Hima, K., Gauthier, P., Tatard, C., Duplantier, J. M., Dobigny, G., Granjon, L., Dalecky, A., Bâ, K., Sembène, M., Brouat, C. (2010). Isolation and characterization of microsatellites in Gerbillus nigeriae. Molecular Ecology Resources.
[21]
Rousset, F. (2008). Genepop 7: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8 (1): 103-106.
[22]
Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B: Methodological, Vol. 57, No. 1, pp. 289-300.
[23]
Dabney, A., Storey, J. D., Warnes, G. R. (2011). Q-value estimation for false discovery rate control. R package v1.2.0. R Foundation for Statistical Computing.
[24]
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590.
[25]
Weir, B. S., Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
[26]
Goudet, J. (2001). FSTAT, version 2.9. 3, a program to estimate and test gene diversities and fixation indices. Lausanne University, Switzerland.
[27]
Hardy, O. J., and X. Vekemans (2002). SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620.
[28]
Loiselle, B. A., V. L. Sork, J. Nason and C. Graham (1995). Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425.
[29]
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
[30]
Watts, P. C., Rousset F., Saccheri, I. J. et al. (2007). Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Molecular Ecology, 16, 737–751.
[31]
Rousset, F. (2000). Genetic differentiation between individuals. Journal of Evolutionary Biology, 13: 58–62.
[32]
Leblois, Raphael, Arnaud Estoup, and François Rousset (2003). Influence of Mutational and Sampling Factors on the Estimation of Demographic Parameters in a Continuous Population under Isolation by Distance. Mol. Biol. Evol. 20: 491–502.
[33]
Granjon Laurent, Cosson Jean-François, Quesseveur Erwan, Sicard Bruno, (2005). Population dynamics of the multimammate rat Mastomys huberti in an annually flooded agricultural region of central Mali. J. of Mammalogy, 86 (5): 997-1008.
[34]
Brouat, C., Loiseau, A., Kane, M., Bâ, K., Duplantier, J. M. (2007). Population genetic structure of two ecologically distinct multimammate rats: the commensal Mastomys natalensis and the wild Mastomys erythroleucus in southeastern Senegal. Mol. Ecol. 2007 16 (14): 2985-97.
[35]
Van Hooft P., Cosson, J. F., Vibe-Petersen, S. and Leirs, H. (2008). Dispersal in Mastomys natalensis mice: use of fine-scale genetic analyses for pest management. Hereditas 145: 262-273.
[36]
Gauffre, B., Berthier, K., Inchausti, P., Chaval, Y., Bretagnolle, V., Cosson, J-F. (2014). Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Molecular Ecology, 23, 3214–3225.
[37]
J. B. Mangombi, C. Brouat, A. Loiseau, O. Banga, E. M. Leroy, M. Bourgarel, J.-M. Duplantier. (2016). Urban population genetics of the invasive black rats in Franceville, Gabon. Journal of Zoology, 299, 183–190.
[38]
Berthier, K., Garba, M., Leblois, R., Navascues, M., Tatard, C., Gauthier, P., Gagare, S., Piry, S., Brouat, C., Dalecky, A., Loiseau, A., and Dobigny, G. Black rat invasion of inland Sahel: insights from interviews and population genetics in south-western Niger. Biological Journal of the Linnean Society, 119, 748–765.
[39]
Spitz, F. (1969). L'échantillonnage des populations des petits mammifères. In: L'échantillonnage des peuplements animaux des milieux terrestres. Lamotte et Bourlière (eds.), Masson, Paris. 153-188.
[40]
Direction de la Météorologie Nationale du Niger. (2014). Zones climatiques du Niger et cumuls pluviométriques correspondants. Bulletin de la DMN (2014), 2ème trimestre, 17 pages.
[41]
Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L., Levis, S., Vieux, B., Descroix, L., Gosset, M., Mougin, E., Peugeot, C., Seguis, L. (2009). AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 375 (1-2): 3-13.
[42]
Miehe, S., Kluge, J., von Wehrden, H., Retzer, V. (2010). Long-term degradation of Sahelian rangeland detected by 27 years of field study in Senegal. Journal of Applied Ecology 47: 692-700.
[43]
Maranz, S. (2009). Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography 36: 1181-1193.
[44]
Dobigny, G. (2002). Inventaire et Biogéographie des rongeurs du Niger: Nuisances aux cultures, implications dans certains problèmes de santé publique et vétérinaires. Rapport de Coopération pour le Service National. 71 pp.
[45]
Granjon Laurent and Cosson Jean-François. (2008). Social relationships in Mastomys huberti as deduced from field and genetic analyses of multiple capture data. Mammalia 72: 161-168.
[46]
Lalis A, Leblois R, Lecompte E, Denys C, ter Meulen J, Wirth T (2012). The impact of human conflict on the genetics of Mastomys natalensis and Lassa virus in West Africa. Plos One 7, e37068.
[47]
Gryseels, S., Gouy De Bellocq, J., Makundi, R., Vanmechelen, K., Broeckhove, J., Mazoch, V., Sumbera, R., Zimajr, J., Leirs, H. & Baird, S. J. E. (2016). Genetic distinction between contiguous urban and rural multimammate mice in Tanzania despite gene flow. J. Evol. Biol. 29: 1952–196.
[48]
Bryja, J., Granjon, L., Dobigny, G., Patzenhauerovà, H., Konečný, A., Duplantier, J. M., Gauthier, P., Colyn, M., Durnez, L., Lalis, A. & Nicolas, V. (2010). Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): The environment / geography / genetic interplay. Molecular Ecology, 19: 4783-4799.
[49]
Poulet, A. R. (1982). Pullulation de rongeurs dans le Sahel. Mécanismes et déterminisme du cycle d'abondance de Taterillus pygargus et Arvicanthis niloticus (Rongeurs, Gerbillidés et Muridés) dans le Sahel du Sénégal de 1975 à 1977. Thèse de Doctorat d'Etat, Univ. Paris VI. 367 pp.
[50]
Gautun, J. C. (1981). Ecologie des rongeurs de savane en moyenne Côte d'Ivoire. Thèse de Doctorat d'Etat ès Sc. Naturelles, Univ. Pierre & Marie Curie Paris VI. 165 pp.
[51]
Dosso, H. (1983). Rongeurs des forêts hygrophiles conservées et des zones anthropisées de la Côte d'Ivoire méridionale. Thèse de Doctorat, Univ. d'Abidjan. 249 pp.
[52]
De Meeûs Thierry. (2018). Revisiting FIS, FST, Wahlund Effects, and Null Alleles, Journal of Heredity, Vol. 109: 4, 446–456.
[53]
Sicard B., Fuminier F. (1994). Relations entre les variations saisonnières du métabolisme hydrique, l’estivation et la reproduction chez Gerbillus nigeriae et Taterillus petteri (Rodentia, Gerbillidae). Comptes rendus de l’Académie des sciences, sciences de la vie, Paris, 317: 231-238.
[54]
Sicard B., Papillon Y. (1996). Water redistribution and the life cycle of Sahelian rodents. Mammalia, 60: 607-617.
[55]
Fletcher, D., Dawson, S., Slooten, E. (2002). Designing a mark- recapture study to allow for local emigration. Journal of Agricultural, Biological and Environmental Statistics 7 (4): 586-593.
[56]
Perret, N., Pradel, R., Miaud, C., Grolet, O., Joly, P. (2003). Transience, dispersal and survival rates in newt patchy populations. Journal of Animal Ecology 72: 567-575.
[57]
Flores-Manzanero, A., M. A. Luna-Barcenas, R. J. Dyer and E. Vazquez-Dominguez (2018). Functional connectivity and home range inferred at a microgeographic landscape genetics scale in a desert–dwelling rodent. Ecology and Evolution 9: 437-453.
[58]
Wang, G., Liu, W., Wang, Y., Wan, X., and Zhong, W. (2017). Restricted dispersal determines fine-scale spatial genetic structure of Mongolian gerbils. Current Zoology, 63 (6): 687–691.
[59]
Aguillon, S. M., Fitzpatrick, J. W., Bowman, R., Schoech, S. J., Clark, A. G., Coop, G., Chen, N. (2017). Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13 (8): e1006911.
[60]
Mabry, K. E., E. L. Shelley, K. E. Davis, D. T. Blumstein and D. H. van Vuren (2013). Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis. PloS One 8: e57980.
[61]
Hubert, B. (1977). Ecologie des populations des rongeurs de Bandia (Sénégal), en zone sahelo-soudanienne. Terre et Vie 31: 33-100.
[62]
Thiam, M., Ba, K., Duplantier, J-M. (2008). Impacts of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis. African Zoology, 43 (2): 135-143.
[63]
Skonhoft, A., Leirs, H., Andreassen, H. P., Mulungu, L. S. A., Stenseth, N. C., (2006). The bioeconomics of controlling an African rodent pest species. Environment and Development Economics 11: 453-475.
Browse journals by subject