| Peer-Reviewed

An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors

Received: 24 April 2021    Accepted: 11 May 2021    Published: 13 July 2021
Views:       Downloads:
Abstract

Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events. An extreme bias in synonymous codon usage is observed in both the conserved and non-conserved regions of many of these receptors that could be potentially relevant in codon optimization studies. The analysis of their compositional structures would help to design new evolutionary based strategies for rational mutations that would aid to understand the characteristics of individual G protein-coupled receptors, their subfamilies and the role in many physiological and pathological processes, supplying new possible drug targets.

Published in Ecology and Evolutionary Biology (Volume 6, Issue 3)
DOI 10.11648/j.eeb.20210603.11
Page(s) 53-77
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Evolution, Triplet Composon, Ortholog, G-protein Coupled Receptor, Odorant Receptor

References
[1] R. Fredriksson, M. C. Lagerstrom, L. G. Lundin, H. B. Schioth, The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256-1272 (2003).
[2] D. M. Rosenbaum, S. G. Rasmussen, B. K. Kobilka, The structure and function of G-protein-coupled receptors. Nature 459, 356-363 (2009).
[3] M. Rask-Andersen, M. S. Almén, H. B. Schiöth. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10, 579–590 (2011).
[4] O. S. Soyer, M. W. Dimmic, R. R. Neubig, R. A. Goldstein. Dimerization in aminergic G-protein-coupled receptors: application of a hidden-site class model of evolution. Biochemistry 42,14522-14531 (2003).
[5] W. K. Kroeze, D. J. Sheffler, B. L. Roth, G-protein-coupled receptors at a glance. J Cell Sci 116, 4867-4869 (2003).
[6] Y. Zhang, M. E. Devries, J. Skolnick, Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2, e13 (2006).
[7] E. van der Horst, J. E. Peironcely, A. P. Ijzerman, M. W. Beukers, J. R. Lane, H. W. van Vlijmen, M. T. Emmerich, Y. Okuno, A. Bender, A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization. BMC Bioinformatics 11, 316 (2010).
[8] E. Jacoby, R. Bouhelal, M. Gerspacher, K. Seuwen. The 7 TM G-protein-coupled receptor target family. ChemMedChem 1, 761-782 (2006).
[9] Y. Kawasawa, L. M. McKenzie, D. P. Hill, H. Bono, M. Yanagisawa, RIKEN GER Group; GSL Members, G protein-coupled receptor genes in the FANTOM2 database. Genome Res 13, 1466-1477 (2003).
[10] M. Wistrand, L. Kall, E. L. Sonnhammer. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15, 509-521 (1991).
[11] Buck. L, Axel. R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187 (2006).
[12] Y. Pilpel, D. Lancet. The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci 8, 969-977 (1999).
[13] W. C. Probst, L. A. Snyder, D. I. Schuster, J. Brosius, S. C. Sealfon. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11, 1-20 (1992).
[14] R. A. Gibbs, G. M. Weinstock, M. L. Metzker, D. M. Muzny, E. J. Sodergren, S. Scherer, G. Scott, D. Steffen, K. C. Worley, P. E. Burch, G. Okwuonu, S. Hines, L. Lewis, C. DeRamo, O. Delgado, S. Dugan-Rocha, G. Miner, M. Morgan, A. Hawes, R. Gill, Celera, R. A. Holt, M. D. Adams, P. G. Amanatides, H. Baden-Tillson, M. Barnstead, S. Chin, C. A. Evans, S. Ferriera, C. Fosler, A. Glodek, Z. Gu, D. Jennings, C. L. Kraft, T. Nguyen, C. M. Pfannkoch, C. Sitter, G. G. Sutton, J. C. Venter, T. Woodage, D. Smith, H. M. Lee, E. Gustafson, P. Cahill, A. Kana, L. Doucette-Stamm, K. Weinstock, K. Fechtel, R. B. Weiss, D. M. Dunn, E. D. Green, R. W. Blakesley, G. G. Bouffard, P. J. De Jong, K. Osoegawa, B. Zhu, M. Marra, J. Schein, I. Bosdet, C. Fjell, S. Jones, M. Krzywinski, C. Mathewson, A. Siddiqui, N. Wye, J. McPherson, S. Zhao, C. M. Fraser, J. Shetty, S. Shatsman, K. Geer, Y. Chen, S. Abramzon, W. C. Nierman, P. H. Havlak, R. Chen, K. J. Durbin, A. Egan, Y. Ren, X. Z. Song, B. Li, Y. Liu, X. Qin, S. Cawley, K. C. Worley, A. J. Cooney, L. M. D'Souza, K. Martin, J. Q. Wu, M. L. Gonzalez-Garay, A. R. Jackson, K. J. Kalafus, M. P. McLeod, A. Milosavljevic, D. Virk, A. Volkov, D. A. Wheeler, Z. Zhang, J. A. Bailey, E. E. Eichler, E. Tuzun, E. Birney, E. Mongin, A. Ureta-Vidal, C. Woodwark, E. Zdobnov, P. Bork, M. Suyama, D. Torrents, M. Alexandersson, B. J. Trask, J. M. Young, H. Huang, H. Wang, H. Xing, S. Daniels, D. Gietzen, J. Schmidt, K. Stevens, U. Vitt, J. Wingrove, F. Camara, M. Mar Alba, J. F. Abril, R. Guigo, A. Smit, I. Dubchak, E. M. Rubin, O. Couronne, A. Poliakov, N. Hubner, D. Ganten, C. Goesele, O. Hummel, T. Kreitler, Y. A. Lee, J. Monti, H. Schulz, H. Zimdahl, H. Himmelbauer, H. Lehrach, H. J. Jacob, S. Bromberg, J. Gullings-Handley, M. I. Jensen-Seaman, A. E. Kwitek, J. Lazar, D. Pasko, P. J. Tonellato, S. Twigger, C. P. Ponting, J. M. Duarte, S. Rice, L. Goodstadt, S. A. Beatson, R. D. Emes, E. E. Winter, C. Webber, P. Brandt, G. Nyakatura, M. Adetobi, F. Chiaromonte, L. Elnitski, P. Eswara, R. C. Hardison, M. Hou, D. Kolbe, K. Makova, W. Miller, A. Nekrutenko, C. Riemer, S. Schwartz, J. Taylor, S. Yang, Y. Zhang, K. Lindpaintner, T. D. Andrews, M. Caccamo, M. Clamp, L. Clarke, V. Curwen, R. Durbin, E. Eyras, S. M. Searle, G. M. Cooper, S. Batzoglou, M. Brudno, A. Sidow, E. A. Stone, J. C. Venter, B. A. Payseur, G. Bourque, C. Lopez-Otin, X. S. Puente, K. Chakrabarti, S. Chatterji, C. Dewey, L. Pachter, N. Bray, V. B. Yap, A. Caspi, G. Tesler, P. A. Pevzner, D. Haussler, K. M. Roskin, R. Baertsch, H. Clawson, T. S. Furey, A. S. Hinrichs, D. Karolchik, W. J. Kent, K. R. Rosenbloom, H. Trumbower, M. Weirauch, D. N. Cooper, P. D. Stenson, B. Ma, M. Brent, M. Arumugam, D. Shteynberg, R. R. Copley, M. S. Taylor, H. Riethman, U. Mudunuri, J. Peterson, M. Guyer, A. Felsenfeld, S. Old, S. Mockrin, F. Collins. Rat Genome Sequencing Project C Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493-521 (2004).
[15] M. Behrens, L. Briand, C. A. de March, H. Matsunami, A. Yamashita, W. Meyerhof, S. Weyand. Structure-Function Relationships of Olfactory and Taste Receptors. Chem Senses 43, 81-87 (2018).
[16] T. Warne, R. Moukhametzianov, J. G. Baker, R. Nehme, P. C. Edwards, A. G. Leslie, G. F. Schertler, C. G. Tate. The structural basis for agonist and partial agonist action on a beta (1)-adrenergic receptor. Nature 469, 241-244 (2011).
[17] L. Charlier, J. Topin, C. A. de March, P. C. Lai, C. J. Crasto, J. Golebiowski. Molecular modelling of odorant/olfactory receptor complexes. Methods Mol Biol 1003, 53-65 (2013).
[18] P. C. Lai, B. Guida, J. Shi, C. J. Crasto. Preferential binding of an odor within olfactory receptors: a precursor to receptor activation. Chem Senses 39, 107-123 (2014).
[19] P. C. Lai, M. S. Singer, C. J. Crasto. Structural activation pathways from dynamic olfactory receptor-odorant interactions. Chem Senses 30, 781-792 (2005).
[20] M. A. Fuertes, J. M. Pèrez, E. Zuckerkandl, C. Alonso Introns form compositional clusters in parallel with the compositional clusters of the coding sequences to which they pertain. J Mol Evol 72, 1-13 (2011).
[21] M. A. Fuertes, C. Alonso. A method for the Annotation of Functional Similarities of Coding DNA Sequences: the Case of a Populated Cluster of Transmembrane Proteins. J Mol Evol 84, 29-38 (2016).
[22] M. A. Fuertes, J. R. Rodrigo, C. Alonso. Conserved Critical Evolutionary Gene Structures in Orthologs. J Mol Evol 87, 93-105, (2019).
[23] M. A. Fuertes, S. Lòpez-Arguello, C. Alonso, C. Evolutionary conserved compositional structures hidden in genomes of the foot-and-mouth disease virus and of the human rhinovirus. Sci Rep 9, 16553 (2019).
[24] Y. M. Park, S. Squizzato, N. Buso, T. Gur, R. Lopez R. The EBI search engine: EBI search as a service-making biological data accessible for all. Nucleic Acids Res 45, W545-W549 (2017).
[25] M. Safran, V. Chalifa-Caspi, O. Shmueli, T. Olender, M. Lapidot, N. Rosen, M. Shmoish, Y. Peter, G. Glusman, E. Feldmesser, A. Adato, I. Peter, M. Khen, T. Atarot, Y. Groner, D. Lancet D. Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res 31, 142-146 (2003).
[26] G. Stelzer, N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T. I. Stein, R. Nudel, I. Lieder, Y. Mazor, S. Kaplan, D. Dahary, D. Warshawsky, Y. Guan-Golan, . Kohn, N. Rappaport, M. Safran, D. Lancet. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics 54, 1.30.1-1.30.33 (2016).
[27] J. M. Young, B. J. Trask. The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11, 1153-1160 (2002).
[28] D. D. Pervouchine, S. Djebali, A. Breschi, C. A. Davis, P. P. Barja, A. Dobin, A. Tanzer, J. Lagarde, C. Zaleski, L. H. See, M. Fastuca, J. Drenkow, H. Wang, G. Bussotti, B. Pei, S. Balasubramanian, J. Monlong, A. Harmanci, M. Gerstein, M. A. Beer, C. Notredame, R. Guigo, T. R. Gingeras. Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nat Commun 6, 5903 (2015).
[29] G. Glusman, A. Bahar, D. Sharon, Y. Pilpel, J. White, D. Lancet. The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11, 1016-1023 (2000).
[30] C. L. Smith, J. A. Blake, J. A. Kadin, J. E. Richardson, C. J. Bult, G. Mouse Genome Database. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Res 46, D836-D842 (2018).
[31] V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G. Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka, R. C. Stevens. High-resolution crystal structure of an engineered human beta 2-adrenergic G protein-coupled receptor. Science 318, 1258-1265 (2007).
[32] F. Z. Chung, C. D. Wang, P. C. Potter, J. C. Venter, C. M. Fraser. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem 263, 4052-4055 (1988).
[33] D. M. Rosenbaum, V. Cherezov, M. A. Hanson, S. G. Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, X. J. Yao, W. I. Weis, R. C. Stevens, B. K. Kobilka. GPCR engineering yields high-resolution structural insights into beta 2-adrenergic receptor function. Science 318, 1266-1273 (2007).
[34] W. R. Pearson. An introduction to sequence similarity ("homology") searching. Curr Protoc Bioinformatics Chapter 3, Unit 3.1 (2013).
[35] J. B. Kruskal. An overview of squence comparison. Time warps, string edits and macromolecules: the theory and practice of sequence comparison SIAM Review. CSLI Publications, Stanford University, pp. 201-237 (1983).
[36] S. B. Needleman, C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48, 443-453 (1970).
[37] L. J. Mullan, A. J. Bleasby. Short EMBOSS User Guide. European Molecular Biology Open Software Suite. Brief Bioinform 3, 92-94 (2002).
[38] S. A. Olson. EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform 3, 87-91 (2002).
[39] M. Grossmann, B. D. Weintraub, M. W. Szkudlinski. Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological, and therapeutic implications for the glycoprotein hormone family. Endocr Rev 18, 476-501 (1997).
[40] A. P. N. Themmen, I. T. Huhtaniemi. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 21, 551-583 (2000).
[41] N. Barker, H. Clevers. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681-1696 (2010).
[42] S. Nakata, E. Phillips, V. Goidts. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells. Cancer Manag Res 6, 171-180 (2014).
[43] C. A. de March, Y. Yu, M. J. Ni, K. A. Adipietro, H. Matsunami, M. Ma, J. Golebiowski. Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors. J Am Chem Soc 137, 8611-8616 (2015).
[44] A. S. Dore, K. Okrasa, J. C. Patel, M. Serrano-Vega, K. Bennett, R. M. Cooke, J. C. Errey, A. Jazayeri, S. Khan, B. Tehan, M. Weir, G. R. Wiggin, F. H. Marshall. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557-562 (2014).
[45] E. Hodge, C. P. Nelson, S. Miller, C. K. Billington, C. E. Stewart, C. Swan, A. Malarstig, A. P. Henry, C. Gowland, E. Melén, I. P. Hall, I. Sayers. HTR4 gene structure and altered expression in the developing lung. Respir Res 14, 77 (2013).
[46] T. K. Bjarnadottir, D. E. Gloriam, S. H. Hellstrand, H. Kristiansson, R. Fredriksson, H. B. Schioth. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263-273 (2006).
[47] M. Johnson. Molecular mechanisms of beta (2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 117, 18-24 (2006).
[48] H. C. Huang, P. S. Klein. The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol 5, 234 (2004).
[49] H. Clevers, K. M. Loh, R. Nusse. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).
[50] S. Y. Hsu. New insights into the evolution of the relaxin-LGR signaling system. Trends Endocrinol Metab 14, 303-309 (2003).
[51] W. de Lau, W. C. Peng, P. Gros, H. Clevers. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28, 305-316 (2014).
[52] K. S. Carmon, X. Gong, Q. Lin, A. Thomas, Q. Liu. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108, 11452-11457 (2011).
[53] R. Chen, E. V. Davydov, M. Sirota, A. J. Butte. Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association. PLoS One 5, e13574 (2010).
[54] R. Hunt, Z. E. Sauna, S. V. Ambudkar, M. M. Gottesman, C. Kimchi-Sarfaty. Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578, 23-39 (2009).
[55] S. A. Shabalina, N. A. Spiridonov, A. Kashina. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41, 2073-2094 (2013).
[56] D. A. Drummond, J. D. Bloom, C. Adami, C. O. Wilke, F. H. Arnold. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A 102 (40), 14338-14343, (2005).
[57] D. A. Drummond, A. Raval, C. O. Wilke. A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23, 327-337 (2006).
[58] D. A. Drummond, C. O. Wilke. Mistranslation-induced protein misfolding as a dominantconstraint on coding-sequence evolution. Cell 134 (2), 341-352 (2008).
[59] D. Agashe, N. C. Martinez-Gomez, D. A. Drummond, C. J. Marx. Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol 30, 549-560 (2013).
[60] M. J. Lajoie, S. Kosuri, J. A. Mosberg, C. J. Gregg, D. Zhang, G. M. Church. Probing the limits of genetic recoding in essential genes. Science 342, 361-363 (2013a).
[61] M. J. Lajoie, A. J. Rovner, D. B. Goodman, H. R. Aerni, A. D. Haimovich, G. Kuznetsov, J. A. Mercer, H. H. Wang, P. A. Carr, J. A. Mosberg, N. Rohland, P. G. Schultz, J. M. Jacobson, J. Rinehart, G. M. Church, F. J. Isaacs. Genomically recoded organisms expand biological functions. Science 342, 357-360 (2013b).
[62] N. Ostrov, M. Landon, M. Guell, G. Kuznetsov, J. Teramoto, N. Cervantes, M. Zhou, K. Singh, M. G. Napolitano, M. Moosburner, E. Shrock, B. W. Pruitt, N. Conway, D. B. Goodman, C. L. Gardner, G. Tyree, A. Gonzales, B. L. Wanner, J. E. Norville, M. J. Lajoie, G. M. Church. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819-822 (2016).
[63] J. H. Felce, S. L. Latty, R. G. Knox, S. R. Mattick, Y. Lui, S. F. Lee, D. Klenerman, S. J. Davis. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Cell Rep 20, 2654-2665 (2017).
[64] N. Ben-Arie, D. Lancet, C. Taylor, M. Khen, N. Walker, D. H. Ledbetter, R. Carrozzo, K. Patel, D. Sheer, H. Lehrach, M. A. North. Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum Mol Genet 3, 229-235 (1994).
[65] G. Glusman, S. Clifton, B. Roe, D. Lancet. Sequence analysis in the olfactory receptor gene cluster on human chromosome 17: recombinatorial events affecting receptor diversity. Genomics 37, 147-160 (1996).
[66] M. C. Lagerstrom, H. B. Schioth. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7, 339-357 (2008).
[67] M. Nakamura, D. Yasuda, N. Hirota, T. Shimizu. Specific ligands as pharmacological chaperones: The transport of misfolded G-protein coupled receptors to the cell surface. IUBMB Life 62, 453-459 (2010).
[68] C. E. Elling, K. Thirstrup, B. Holst, T. W. Schwartz. Conversion of agonist site to metal-ion chelator site in the beta (2)-adrenergic receptor. Proc Natl Acad Sci U S A 96, 12322-12327 (1999).
[69] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano. Crystal structure of hodopsin: A G protein-coupled receptor. Science 289, 739-745 (2000).
Cite This Article
  • APA Style

    Miguel Angel Fuertes, Carlos Alonso. (2021). An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecology and Evolutionary Biology, 6(3), 53-77. https://doi.org/10.11648/j.eeb.20210603.11

    Copy | Download

    ACS Style

    Miguel Angel Fuertes; Carlos Alonso. An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecol. Evol. Biol. 2021, 6(3), 53-77. doi: 10.11648/j.eeb.20210603.11

    Copy | Download

    AMA Style

    Miguel Angel Fuertes, Carlos Alonso. An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecol Evol Biol. 2021;6(3):53-77. doi: 10.11648/j.eeb.20210603.11

    Copy | Download

  • @article{10.11648/j.eeb.20210603.11,
      author = {Miguel Angel Fuertes and Carlos Alonso},
      title = {An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors},
      journal = {Ecology and Evolutionary Biology},
      volume = {6},
      number = {3},
      pages = {53-77},
      doi = {10.11648/j.eeb.20210603.11},
      url = {https://doi.org/10.11648/j.eeb.20210603.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.eeb.20210603.11},
      abstract = {Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events. An extreme bias in synonymous codon usage is observed in both the conserved and non-conserved regions of many of these receptors that could be potentially relevant in codon optimization studies. The analysis of their compositional structures would help to design new evolutionary based strategies for rational mutations that would aid to understand the characteristics of individual G protein-coupled receptors, their subfamilies and the role in many physiological and pathological processes, supplying new possible drug targets.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors
    AU  - Miguel Angel Fuertes
    AU  - Carlos Alonso
    Y1  - 2021/07/13
    PY  - 2021
    N1  - https://doi.org/10.11648/j.eeb.20210603.11
    DO  - 10.11648/j.eeb.20210603.11
    T2  - Ecology and Evolutionary Biology
    JF  - Ecology and Evolutionary Biology
    JO  - Ecology and Evolutionary Biology
    SP  - 53
    EP  - 77
    PB  - Science Publishing Group
    SN  - 2575-3762
    UR  - https://doi.org/10.11648/j.eeb.20210603.11
    AB  - Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events. An extreme bias in synonymous codon usage is observed in both the conserved and non-conserved regions of many of these receptors that could be potentially relevant in codon optimization studies. The analysis of their compositional structures would help to design new evolutionary based strategies for rational mutations that would aid to understand the characteristics of individual G protein-coupled receptors, their subfamilies and the role in many physiological and pathological processes, supplying new possible drug targets.
    VL  - 6
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Microbiology, Centre for Molecular Biology “Severo Ochoa”, Spanish National Research Council and Autonomous University, Madrid, Spain

  • Department of Microbiology, Centre for Molecular Biology “Severo Ochoa”, Spanish National Research Council and Autonomous University, Madrid, Spain

  • Sections